랜덤 포레스트(Random Forests) 더 세련된 기계학습 알고리즘을 사용해봅시다. 소개 의사 결정 트리는 당신에게 어려운 결정을 남겨줍니다. 잎사귀(leaves)가 많아 깊이가 깊은 트리는 각 예측이 단지 몇 개의 주택으로만 얻은 역사적인 데이터로 된 것이기 때문에 과적합(Overfitting)이 일어날 것입니다. 또, 잎사귀(leaves)가 적어 깊이가 얕은 트리는 행 데이터들로부터 패턴을 찾기 위한 여러 구분점들을 포착하는 것에 실패해서 품질이 형편없을 것입니다. 과소적합(Underfitting)이 일어나는 것이지요. 최근의 가장 세련된 모델링 기법일지라도, 과적합과 과소적합 사이의 이 긴장감을 마주합니다. 하지만, 많은 모델들이 더 나은 품질을 끌어내기 위한 영리한 아이디어들을 가지고 있습니다..